A Real-Time Network Traffic Classifier for Online Applications Using Machine Learning

Author:

Ahmed Ahmed AbdelmoamenORCID,Agunsoye Gbenga

Abstract

The increasing ubiquity of network traffic and the new online applications’ deployment has increased traffic analysis complexity. Traditionally, network administrators rely on recognizing well-known static ports for classifying the traffic flowing their networks. However, modern network traffic uses dynamic ports and is transported over secure application-layer protocols (e.g., HTTPS, SSL, and SSH). This makes it a challenging task for network administrators to identify online applications using traditional port-based approaches. One way for classifying the modern network traffic is to use machine learning (ML) to distinguish between the different traffic attributes such as packet count and size, packet inter-arrival time, packet send–receive ratio, etc. This paper presents the design and implementation of NetScrapper, a flow-based network traffic classifier for online applications. NetScrapper uses three ML models, namely K-Nearest Neighbors (KNN), Random Forest (RF), and Artificial Neural Network (ANN), for classifying the most popular 53 online applications, including Amazon, Youtube, Google, Twitter, and many others. We collected a network traffic dataset containing 3,577,296 packet flows with different 87 features for training, validating, and testing the ML models. A web-based user-friendly interface is developed to enable users to either upload a snapshot of their network traffic to NetScrapper or sniff the network traffic directly from the network interface card in real time. Additionally, we created a middleware pipeline for interfacing the three models with the Flask GUI. Finally, we evaluated NetScrapper using various performance metrics such as classification accuracy and prediction time. Most notably, we found that our ANN model achieves an overall classification accuracy of 99.86% in recognizing the online applications in our dataset.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3