Helix-Free Ferroelectric Liquid Crystals: Electro Optics and Possible Applications

Author:

Andreev Alexander,Andreeva Tatiana,Kompanets IgorORCID,Zalyapin Nikolay

Abstract

This is a review of results from studying ferroelectric liquid crystals (FLCs) of a new type developed for fast low-voltage displays and light modulators. These materials are helix-free FLCs, which are characterized by spatially periodic deformation of smectic layers and a small value of spontaneous polarization (less than 50 nC/cm2). The FLC director is reoriented due to the motion of solitons at the transition to the Maxwellian mechanism of energy dissipation. A theoretical model is proposed for describing the FLC deformation and director reorientation. The frequency and field dependences of the optical response time are studied experimentally for modulation of light transmission, scattering, and phase delay with a high rate. The hysteresis-free nature and smooth dependence of the optical response on the external electric field in the frequency range up to 6 kHz is demonstrated, as well as bistable light scattering with memorization of an optical state for a time exceeding the switching time by up to 6 orders of magnitude. Due to the spatially inhomogeneous light phase delay, the ability of a laser beam to cause interference is effectively suppressed. The fastest FLCs under study are compatible with 3D, FLC on Silicon (FLCoS), and Field Sequential Colors (FSC) technologies.

Funder

Ministry of Education and Science of Russia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference31 articles.

1. Ferroelectric and Antiferroelectric Liquid Crystals;Lagerwall,1999

2. Sub-microsecond switching in ferroelectric liquid crystals;Clark;J. Appl. Phys.,1980

3. Liquid Crystal Devices: Physics and Applications;Chigrinov,1999

4. New electrooptic effect of microsecond response utilizing transient light scattering in ferroelectric liquid crystal;Katsumi;J. Appl. Phys. Jpn.,1984

5. Electric-field-controlled light scattering in ferroelectric liquid crystals

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3