Author:
Wang Wei,Qiu Shi,Xu Haidong,Lin Tianxu,Meng Fanchao,Han Ying,Qi Yuefeng,Wang Chao,Hou Lantian
Abstract
A trench-assisted multicore fiber (TA-MCF) with single-supermode transmission and nearly zero flattened dispersion is proposed herein. By adding a simplified microstructure cladding with only one ring of low-index inclusions on the basis of the multicore fiber, the microstructure cladding and mode-coupling mechanism were jointly employed into the TA-MCF to modulate light transmission. This guarantees that the TA-MCFs had sufficient capability for wideband dispersion management when only pure, germanium-doped, and fluorine-doped silica glass with low index differences were chosen to form the TA-MCF. Analyses also revealed that the TA-MCFs have the merits of shorter cut-off wavelength and flatter-top optical intensity distribution compared with traditional multicore fibers. After the investigation of the structural parameters’ influences on the dispersion of the fundamental supermode, two TA-MCFs with single-supermode transmission and nearly zero flattened dispersion were designed. For the seven-core TA-MCF, the dispersion varying from −0.46 to 1.35 ps/(nm·km) in the wavelength range of 1.50 to 2.04 μm, with bending loss as low as 0.085 dB/km and 35-mm bending radius at 1550 nm was achieved with index difference less than 0.015. The TA-MCFs proposed herein have the advantages of being a quasi-single material, with an all solid scheme and simplified structure.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献