Comparison of Relaxation Modulus Converted from Frequency- and Time-Dependent Viscoelastic Functions through Numerical Methods

Author:

Zhang Weiguang,Cui Bingyan,Gu Xingyu,Dong Qiao

Abstract

Due to the difficulty of obtaining relaxation modulus directly from experiments, many interconversion methods from other viscoelastic functions to relaxation modulus were developed in previous years. The objectives of this paper were to analyze the difference of relaxation modulus converted from dynamic modulus and creep compliance and explore its potential causes. The selected methods were the numerical interconversions based on Prony series representation. For the dynamic to relaxation conversion, the time spectrum was determined by the collocation method. Meanwhile, for the creep to relaxation conversion, both the collocation method and least squares method were adopted to perform the Laplace transform. The results show that these two methods do not present a significant difference in estimating relaxation modulus. Their difference mostly exists in the transient reduced time region. Calculating the average of two methods is suggested to avoid great deviation of single experiment. To predict viscoelastic responses from creep compliance, the collocation method yields comparable results to the least squares method. Thus, simply-calculated collocation method may be preferable in practice. Further, the master curve pattern is sensitive to the Prony series coefficients. The difference in transient reduced time region may be attributed to the indeterminate Prony series coefficients.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3