Ferrocene Derivatives Functionalized with Donor/Acceptor (Hetero)Aromatic Substituents: Tuning of Redox Properties

Author:

Manfredi NorbertoORCID,Decavoli CristinaORCID,Boldrini Chiara L.,Coluccini Carmine,Abbotto AlessandroORCID

Abstract

A series of functionalized ferrocene derivatives carrying electron-donor and electron-withdrawing (hetero)aromatic substituents has been designed as potential alternative electrolyte redox couples for dye-sensitized solar cells (DSSC). The compounds have been synthesized and fully characterized in their optical and electrochemical properties. A general synthetic approach that implies the use of a microwave assisted Suzuki coupling has been developed to access a significative number of compounds. The presence of different electron-rich and electron-poor substituents provided fine tuning of optical properties and energy levels. HOMO and LUMO energy values showed that the substitution of one or two cyclopentadienyl rings of ferrocene can be successfully exploited to increase the maximum attainable voltage from a standard DSSC device using TiO2 as a semiconductor, opening the way to highly efficient, non-toxic, and cheap redox shuttles to be employed in solar energy technologies.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3