Numeric Simulation of Acoustic-Logging of Cave Formations

Author:

Xu Fanghui,Wang ZhuwenORCID

Abstract

The finite difference (FD) method of monopole source is used to simulate the response of full-wave acoustic-logging in cave formations. The effect of the cave in the formation of borehole full-waves was studied. The results show that the radius of cave is not only linearly related to the first arrival of the compressional wave (P-wave), but also to the energy of the shear wave (S-wave). The converted S (S–S wave) and P-waves (S–P wave) are formed when the S-wave encounters the cave. If the source distance is small, the S–S and S–P waves are not separated, and the attenuation of the S-wave is not large, due to superposition of the converted waves. The S–P wave has been separated from the S-wave when the source distance is large, so the attenuation of the S-wave increases. The amplitude of the P and S–waves changes most when the distance of the cave to the borehole wall reaches a certain value; this value is related to the excitation frequency. The amplitude of the Stoneley wave (ST wave) varies directly with the radius of cave. If the radius of the cave is large, the energy of ST wave is weak. The scattered wave is determined by the radius and position of the cave. The investigation depth of a monopole source is limited. When the distance of the cave to the borehole wall exceeds the maximum investigation depth, the borehole acoustic wave is little affected by the cave. In actual logging, the development of the cave can be evaluated by using the first arrival of the P-wave and the energy of the S and ST waves.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference35 articles.

1. Reservoir Properties and Effect Factors on Volcanic Rocks of Basement beneath Wucaiwan Depression, Junggar Basin;Yu;Earth Sci.-J. China Univ. Geosci.,2004

2. Lithofacies and reservoir characteristics of Permian volcanic rocks in the Sichuan Basin

3. Dentification and characterization of multi-scale pores, vugs and fractures in carbonate reservoirs: A case study of the Middle Permian Qixia dolomite reservoirs in the Shuangyushi Structure of the northwestern Sichuan Basin;Wang;Nat. Gas Ind.,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3