A Study on the Potential Fertilization Effects of Microgranule Fertilizer Based on the Protein and Calcined Bones in Maize Cultivation

Author:

Balawejder MaciejORCID,Szostek MałgorzataORCID,Gorzelany Józef,Antos Piotr,Witek Grzegorz,Matłok Natalia

Abstract

In the presented manuscript, the method of production, mechanism of action and the potential fertilizing effect of fertilizer soil microgranules, characterized by a controlled release of ingredients, that were produced from thermally processed bone waste and protein were described. The prepared fertilizer was tested in 3 doses in a pot experiment and thereafter the selected dose of 30 kg ha−1 was utilized in field conditions. The applied dose of fertilizer caused an average increase of maize yield of 620 kg ha−1 (grain moisture 14%). It was found that the obtained increase of maize did not result from the amount of supplied micro and macro elements to the soil, but it was a consequence of the fertilizer’s mechanism of action. It was shown that the release of nitrogen in ammonium form from protein degradation due to the influence of fertilizer components and water had impact on the intensive growth and development of plant root system. This resulted in an increase in plant resistance to water stress during the growing season and consequently, greater yield. The developed soil fertilizer (produced mainly from the processed waste) with the proposed mechanism of action should be successfully applied in fertilizing plants that are grown in areas characterized by cyclical water shortages during the growing season

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference43 articles.

1. Chemia rolna;Gorlach,2001

2. The story of phosphorus: Global food security and food for thought

3. Peak Phosphorus;Dery,2007

4. Phosphorus: A Looming Crisis

5. Phosphorus Recovery from Sewage Sludge via Pyrolysi. Middle Pomeranian scientific society of the environment protection;Szaja;Annu. Set Environ. Prot.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3