Effect of Sows Gestational Methionine/Lysine Ratio on Maternal and Placental Hydrogen Sulfide Production

Author:

Peng Jie,Xia Mao,Xiong Jia,Cui Chenbin,Huang Ningning,Zhou YuanfeiORCID,Wei Hongkui,Peng Jian

Abstract

The placenta is a unique bond between the mother and the fetus during pregnancy, and a proper placental angiogenesis is vital for fetal development. H2S is an endogenous stimulator of angiogenesis that is mainly produced by the methionine transsulfurationpathway. The goal of this study was to evaluate the effect of gestational dietary methionine on maternal and placental H2S production in sows. Multiparous sows (Large×White; third parity; n = 65) were randomly allocated into five groups, with feed diets comprisingstandardized ileal digestible methionine/lysine (Met/Lys) ratios of 0.27 (nutrient requirements of swine (NRC); 2012 level), 0.32, 0.37, 0.42, and 0.47, respectively. The litter size and weight at birth were measured and recorded. Maternal blood samples were obtained at embryonic day (E) E40 d, E90 d, and E114 d of gestation. The placental samples were collected at parturition. The results showed that maternal plasma H2S concentration was not affected at E40 d. However, the maternal plasma H2S concentration changed quadratically with the dietary Met/Lys ratio at E90 d (p < 0.01) and E114 d (p = 0.03). The maximum maternal plasma H2S concentration was at the dietary Met/Lys ratio of 0.37. Meanwhile, maternal plasma H2S concentration was positively correlated with piglets born alive (p < 0.01) and litter weight (p < 0.01). Consistent with the maternal plasma, the placental H2S concentration also changed quadratically with the dietary Met/Lys ratio (p = 0.03); the Met/Lys ratio of 0.37 showed the maximum H2S concentration. In conclusion, our findings revealed that the gestational dietary Met/Lys ratio could affect maternal and placental H2S concentrations, which may be an important molecular mechanism affecting placental angiogenesis and piglet development.

Funder

National key Research and Development project of China

China Agriculture Research System

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3