Automatic Fish Population Counting by Machine Vision and a Hybrid Deep Neural Network Model

Author:

Zhang Song,Yang Xinting,Wang Yizhong,Zhao Zhenxi,Liu Jintao,Liu Yang,Sun Chuanheng,Zhou ChaoORCID

Abstract

In intensive aquaculture, the number of fish in a shoal can provide valuable input for the development of intelligent production management systems. However, the traditional artificial sampling method is not only time consuming and laborious, but also may put pressure on the fish. To solve the above problems, this paper proposes an automatic fish counting method based on a hybrid neural network model to realize the real-time, accurate, objective, and lossless counting of fish population in far offshore salmon mariculture. A multi-column convolution neural network (MCNN) is used as the front end to capture the feature information of different receptive fields. Convolution kernels of different sizes are used to adapt to the changes in angle, shape, and size caused by the motion of fish. Simultaneously, a wider and deeper dilated convolution neural network (DCNN) is used as the back end to reduce the loss of spatial structure information during network transmission. Finally, a hybrid neural network model is constructed. The experimental results show that the counting accuracy of the proposed hybrid neural network model is up to 95.06%, and the Pearson correlation coefficient between the estimation and the ground truth is 0.99. Compared with CNN- and MCNN-based methods, the accuracy and other evaluation indices are also improved. Therefore, the proposed method can provide an essential reference for feeding and other breeding operations.

Funder

Beijing Natural Science Foundation

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3