PAC-Bayes Unleashed: Generalisation Bounds with Unbounded Losses

Author:

Haddouche Maxime,Guedj BenjaminORCID,Rivasplata Omar,Shawe-Taylor John

Abstract

We present new PAC-Bayesian generalisation bounds for learning problems with unbounded loss functions. This extends the relevance and applicability of the PAC-Bayes learning framework, where most of the existing literature focuses on supervised learning problems with a bounded loss function (typically assumed to take values in the interval [0;1]). In order to relax this classical assumption, we propose to allow the range of the loss to depend on each predictor. This relaxation is captured by our new notion of HYPothesis-dependent rangE (HYPE). Based on this, we derive a novel PAC-Bayesian generalisation bound for unbounded loss functions, and we instantiate it on a linear regression problem. To make our theory usable by the largest audience possible, we include discussions on actual computation, practicality and limitations of our assumptions.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference25 articles.

1. A Primer on PAC-Bayesian Learning;Guedj;arXiv,2019

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Empirical Risk Minimization With Relative Entropy Regularization;IEEE Transactions on Information Theory;2024-07

2. Sampling Algorithms in Statistical Physics: A Guide for Statistics and Machine Learning;Statistical Science;2024-02-01

3. User-friendly Introduction to PAC-Bayes Bounds;Foundations and Trends® in Machine Learning;2024

4. The Worst-Case Data-Generating Probability Measure in Statistical Learning;IEEE Journal on Selected Areas in Information Theory;2024

5. On the Validation of Gibbs Algorithms: Training Datasets, Test Datasets and their Aggregation;2023 IEEE International Symposium on Information Theory (ISIT);2023-06-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3