Author:
Yan Weian,Zhang Shijie,Liu Weidong,Yu Yingxia
Abstract
An objective Bayesian method for the Tweedie Exponential Dispersion (TED) process model is proposed in this paper. The TED process is a generalized stochastic process, including some famous stochastic processes (e.g., Wiener, Gamma, and Inverse Gaussian processes) as special cases. This characteristic model of several types of process, to be more generic, is of particular use for degradation data analysis. At present, the estimation methods of the TED model are the subjective Bayesian method or the frequentist method. However, some products may not have historical information for reference and the sample size is small, which will lead to a dilemma for the frequentist method and subjective Bayesian method. Therefore, we propose an objective Bayesian method to analyze the TED model. Furthermore, we prove that the corresponding posterior distributions have nice properties and propose Metropolis–Hastings algorithms for the Bayesian inference. To illustrate the applicability and advantages of the TED model and objective Bayesian method, we compare the objective Bayesian estimates with the subjective Bayesian estimates and the maximum likelihood estimates according to Monte Carlo simulations. Finally, a case of GaAs laser data is used to illustrate the effectiveness of the proposed methods.
Funder
National Natural Science Foundation of China
Jiangxi Provincial Postdoctoral Research Funding Project
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献