Abstract
In this paper, we study the problem of optimal routing for the pair of two-server heterogeneous queues operating in parallel and subsequent optimal allocation of customers between the servers in each queue. Heterogeneity implies different servers in terms of speed of service. An open-loop control assumes the static resource allocation when a router has no information about the state of the system. We discuss here the algorithm to calculate the optimal routing policy based on specially constructed Markov-modulated Poisson processes. As an alternative static policy, we consider an optimal Bernoulli splitting which prescribes the optimal allocation probabilities. Then, we show that the optimal allocation policy between the servers within each queue is of threshold type with threshold levels depending on the queue length and phase of an arrival process. This dependence can be neglected by using a heuristic threshold policy. A number of illustrative examples show interesting properties of the systems operating under the introduced policies and their performance characteristics.
Funder
Peoples' Friendship University of Russia
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献