Exploring an Efficient POI Recommendation Model Based on User Characteristics and Spatial-Temporal Factors

Author:

Xu ChonghuanORCID,Liu Dongsheng,Mei Xinyao

Abstract

The advent of mobile scenario-based consumption popularizes and gradually maturates the application of point of interest (POI) recommendation services based on geographical location. However, the insufficient fusion of heterogeneous data in the current POI recommendation services leads to poor recommendation quality. In this paper, we propose a novel hybrid POI recommendation model (NHRM) based on user characteristics and spatial-temporal factors to enhance the recommendation effect. The proposed model contains three sub-models. The first model considers user preferences, forgetting characteristics, user influence, and trajectories. The second model studies the impact of the correlation between the locations of POIs and calculates the check-in probability of POI with the two-dimensional kernel density estimation method. The third model analyzes the influence of category of POI. Consequently, the above results were combined and top-K POIs were recommended to target users. The experimental results on Yelp and Meituan data sets showed that the recommendation performance of our method is superior to some other methods, and the problems of cold-start and data sparsity are alleviated to a certain extent.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3