Bibliometrics of Machine Learning Research Using Homomorphic Encryption

Author:

Chen ZhigangORCID,Hu Gang,Zheng Mengce,Song Xinxia,Chen Liqun

Abstract

Since the first fully homomorphic encryption scheme was published in 2009, many papers have been published on fully homomorphic encryption and its applications. Machine learning is one of the most interesting applications and has drawn a lot of attention from researchers. To better represent and understand the field of Homomorphic Encryption in Machine Learning (HEML), this paper utilizes automated citation and topic analysis to characterize the HEML research literature over the years and provide the bibliometrics assessments for this burgeoning field. This is conducted by using a bibliometric statistical analysis approach. We make use of web-based literature databases and automated tools to present the development of HEML. This allows us to target several popular topics for in-depth discussion. To achieve these goals, we have chosen the well-established Scopus literature database and analyzed them through keyword counts and Scopus relevance searches. The results show a relative increase in the number of papers published each year that involve both homomorphic cryptography and machine learning. Using text mining of articles titles, we have found that cloud computing is a popular topic in this field, which also includes neural networks, big data, and the Internet of Things. The analysis results show that China, the US, and India have generated almost half of all the research contributions in HEML. The citation statistics, keyword statistics, and topic analyses give us a quick overview of the development of the field, which can be of great help to new researchers. It is also possible to apply our methodology to other research areas, and we see great value in this approach.

Funder

National Natural Science Foundation of China

Ningbo Natural Science Foundation

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference50 articles.

1. Microsoft Azure, AIhttps://azure.microsoft.com/zh-cn/services/machine-learning/

2. Google Prediction APIhttps://cloud.google.com/ai-platform

3. Ersatz Labshttps://www.ersatzlabs.com/

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3