Doss ρ-Almost Periodic Type Functions in Rn

Author:

Kostić MarkoORCID,Du Wei-ShihORCID,Fedorov Vladimir E.ORCID

Abstract

In this paper, we investigate various classes of multi-dimensional Doss ρ-almost periodic type functions of the form F:Λ×X→Y, where n∈N,∅≠Λ⊆Rn, X and Y are complex Banach spaces, and ρ is a binary relation on Y. We work in the general setting of Lebesgue spaces with variable exponents. The main structural properties of multi-dimensional Doss ρ-almost periodic type functions, like the translation invariance, the convolution invariance and the invariance under the actions of convolution products, are clarified. We examine connections of Doss ρ-almost periodic type functions with (ω,c)-periodic functions and Weyl-ρ-almost periodic type functions in the multi-dimensional setting. Certain applications of our results to the abstract Volterra integro-differential equations and the partial differential equations are given.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference31 articles.

1. Almost Periodic Functions;Besicovitch,1954

2. Asymptotically Almost Periodic Solutions of Differential Equations;Cheban,2009

3. Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces;Diagana,2013

4. Almost Periodic Differential Equations;Fink,1974

5. Almost Automorphic and Almost Periodic Functions in Abstract Spaces;N’Guérékata,2001

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Preface;Metrical Almost Periodicity and Applications to Integro-Differential Equations;2023-05-23

2. Metrical Almost Periodicity and Applications to Integro-Differential Equations;DEGRUYTER STUD MATH;2023-05-16

3. On a class of Besicovitch almost periodic type selections of multivalued maps;Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta;2023-05

4. Multi-dimensional besicovitch almost periodic type functions and applications;Communications on Pure and Applied Analysis;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3