Performance of Gradient-Based Optimizer on Charging Station Placement Problem

Author:

Houssein Essam H.ORCID,Deb Sanchari,Oliva DiegoORCID,Rezk HegazyORCID,Alhumade HeshamORCID,Said MokhtarORCID

Abstract

The electrification of transportation is necessary due to the expanded fuel cost and change in climate. The management of charging stations and their easy accessibility are the main concerns for receipting and accepting Electric Vehicles (EVs). The distribution network reliability, voltage stability and power loss are the main factors in designing the optimum placement and management strategy of a charging station. The planning of a charging stations is a complicated problem involving roads and power grids. The Gradient-based optimizer (GBO) used for solving the charger placement problem is tested in this work. A good balance between exploitation and exploration is achieved by the GBO. Furthermore, the likelihood of becoming stuck in premature convergence and local optima is rare in a GBO. Simulation results establish the efficacy and robustness of the GBO in solving the charger placement problem as compared to other metaheuristics such as a genetic algorithm, differential evaluation and practical swarm optimizer.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3