A Near–Far-Field Model for Bubbles Influenced by External Electrical Fields

Author:

Geiser Juergen,Mertin Paul

Abstract

In this paper, we present a model that is based on near–far-field charged bubble formation and transportation in an underlying dielectric liquid. The bubbles are controlled by the dielectric liquid, which is influenced by an external electrical field. This allows us to control the shape and volume of the bubbles in the dielectric liquid, such as water. These simulations are important to close the gap between the formation of charged bubbles, which is a fine-scale model and their transport in the underlying liquid, which is a coarse-scale model. In the fine-scale model, the formation of the bubbles and their influence of the electric-stress is approached by a near-field model, which is done by the Young–Laplace equation plus additional force-terms. In the coarse-scale model, the transport of the bubbles is approached by a far-field model, which is done with a convection-diffusion equation. The models are coupled with a bubble in cell scheme, which interpolates between the fine and coarse scales of the different models. Such a scale-dependent approach allows us to apply optimal numerical solvers for the different fine and coarse time and space scales and help to foresee the fluctuations of the charged bubbles in the E-field. We discuss the modeling approaches, numerical solver methods and we present the numerical results for the near–far-field bubble formation and transport model in a dielectric carrier fluid.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference41 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3