Understanding the Correlation of Demographic Features with BEV Uptake at the Local Level in the United States

Author:

Shom SubhadityaORCID,James Kevin,Alahmad MahmoudORCID

Abstract

Battery Electric Vehicles (BEVs) have seen a substantial growth in the recent past, and this trend is expected to continue. This growth has been far from uniform geographically, with large differences in BEV uptake between countries, states, and cities. This non-uniform growth can be attributed to the demographic and non-demographic factors that characterize a geographical location. In this paper, the demographic factors that affect BEV uptake at the Zone Improvement Plan (ZIP) code level are studied extensively across several states in the United States to understand BEV readiness at its most granular form. Demographic statistics at the ZIP code level more accurately describe the local population than national-, state-, or city-level demographics. This study compiled and preprocessed 242 demographic features to study the impact on BEV uptake in 7155 ZIP codes in 11 states. These demographic features are categorized based on the type of information they convey. The initial demographic features are subjected to feature engineering using various formed hypotheses to extract the optimal level of information. The hypotheses are tested and a total of 82 statistically significant features are selected. This study used correlation analysis to validate the feature engineering and understand the degree of correlation of these features to BEV uptake, both within individual states and at the national level. Results from this study indicate that higher BEV adoption in a state results in a stronger correlation between demographic factors and BEV uptake. Features related to the number of individuals in a ZIP code with an annual income greater than USD 75 thousand are strongly correlated with BEV uptake, followed by the number of owner-occupied housing units, individuals driving alone, and working from home. Features containing compounded information from distinct categories are often better correlated than features containing information from a single category. In-depth knowledge of local BEV uptake is important for applications related to the accommodation of BEVs, and understanding what causes differences in local uptake can allow for both the prediction of future growth and the stimulation of it.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3