Damage Mechanism and Stress Distribution of Gypsum Rock Pillar Subjected to Blasting Disturbance

Author:

Wang Shuli,Liu Zhihe,Zhang Kaizhi,Zheng Huaichang

Abstract

The room-pillar mining technology of underground gypsum resources results in numerous gypsum rock pillars for controlling and supporting mined gobs, which forms a large area of roof hanging gobs. Owing to weathering and mining activities, gypsum rock pillar damage and failure will occur, thereby inducing a large area of gypsum mined-gob collapse accidents and disasters. Blasting is vital to the stability of gypsum rock pillars and is indispensable in mining engineering. Based on field blasting tests and using wave velocity as the basic parameter to characterise the integrity of gypsum rock, the damage mechanism of gypsum rock pillars subjected to blasting disturbance is investigated. With ten blasting tests, the maximum damage rate is 7.82% along the horizontal direction of pillar, and 3.52% along the vertical direction. The FLAC numerical simulation calculation software is used to analyse the stress distribution law of gypsum rock pillars with disturbances of different strengths from different distances. As the disturbance strength increased, the stress increased with no clear linear relationship; as the disturbance distance increased, the stress decreased gradually with a linear relationship. All stress after disturbance is greater than the original static stress, and lower than the ultimate compressive strength. However, the correlation between blasting tests results and numerical simulation results is poor and is discussed for many factors. The results can provide important guidance and reference for clarifying the damage mechanism of gypsum rock pillars subjected to blasting disturbance, as well as reveal the collapse mechanism of gypsum mined gobs.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3