Abstract
In time-evolving graphs, the graph changes at each time interval, and the previously computed results become invalid. We addressed this issue for the traveling salesman problem (TSP) in our previous work and proposed an incremental algorithm where the TSP tour is computed from the previous result instead of the whole graph. In our current work, we have mapped the TSP problem to three partitioning methods named vertex size attribute, edge attribute, and k-means; then, we compared the TSP tour results. We have also examined the effect of increasing the number of partitions on the total computation time. Through our experiments, we have observed that the vertex size attribute performs the best because of a balanced number of vertices in each partition.
Subject
Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献