Many-Objective Quantum-Inspired Particle Swarm Optimization Algorithm for Placement of Virtual Machines in Smart Computing Cloud

Author:

Balicki JerzyORCID

Abstract

Particle swarm optimization algorithm (PSO) is an effective metaheuristic that can determine Pareto-optimal solutions. We propose an extended PSO by introducing quantum gates in order to ensure the diversity of particle populations that are looking for efficient alternatives. The quality of solutions was verified in the issue of assignment of resources in the computing cloud to improve the live migration of virtual machines. We consider the multi-criteria optimization problem of deep learning-based models embedded into virtual machines. Computing clouds with deep learning agents can support several areas of education, smart city or economy. Because deep learning agents require lots of computer resources, seven criteria are studied such as electric power of hosts, reliability of cloud, CPU workload of the bottleneck host, communication capacity of the critical node, a free RAM capacity of the most loaded memory, a free disc memory capacity of the most busy storage, and overall computer costs. Quantum gates modify an accepted position for the current location of a particle. To verify the above concept, various simulations have been carried out on the laboratory cloud based on the OpenStack platform. Numerical experiments have confirmed that multi-objective quantum-inspired particle swarm optimization algorithm provides better solutions than the other metaheuristics.

Funder

Multidisciplinary Digital Publishing Institute

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference39 articles.

1. Live migration of virtual machines in cloud;Agarwal;Int. J. Sci. Res. Publ.,2012

2. Tabu programming for multiobjective optimization problems;Balicki;Int. J. Comp. Sci. Netw. Secur.,2007

3. On solving multiobjective bin packing problems using evolutionary particle swarm optimization

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3