A Study of Passenger Car Cabin Pre-Ventilation under the Sun

Author:

Zhang Yingchao1ORCID,Li Ziqiao1ORCID,Liu Shengda12,Wang Guohua1,Chang He1

Affiliation:

1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130025, China

2. SAIC Volkswagen Automotive Co., Ltd., Shanghai 201805, China

Abstract

With the increasing intelligence of automobiles, vehicle pre-ventilation can be better controlled. In summer, cars parked in the open air are directly exposed to sunlight; thus, a high-temperature environment is formed in the occupant cabin, which seriously affects the passengers and driver’s riding and driving experience. Meanwhile, lowering the temperature of the passenger compartment from a very high temperature to a comfortable temperature consumes a lot of energy. Therefore, it is increasingly important to study the pre-ventilation of the cabin in order to improve the thermal comfort of the occupant cabin and reduce energy consumption. In this paper, a new theoretical model of a cabin temperature control system is proposed. To support the theoretical model, an outdoor parking temperature rise test was carried out. Environmental parameters were obtained and used as the boundary conditions of the subsequent simulation. Based on the mechanism of the cabin temperature rise, the convective heat transfer coefficient on the body surface, the equivalent heat transfer model of the cabin, the solar radiation model and the physical properties of the air, a computational simulation of the temperature rise in the occupant cabin was carried out, and a simulation of the temperature rise in the occupant cabin exposure was studied. The simulation results were compared with the experimental findings to verify the accuracy of the simulation, which provided a reference for the design of the pre-cooling function of the occupant cabin. This study revealed that the pre-ventilation model developed reduces the vehicle cabin temperature through optimal control of air supply volumes and air supply angles. Furthermore, the developed pre-ventilation model is capable of reducing energy consumption, thereby reducing greenhouse gas emissions.

Funder

National Key R&D Program of China

Changsha Automobile Innovation Research Institute Innovation Project, Jilin University

The National Natural Science Foundation of China

Open Foundation of State Key Laboratory of Automotive Simulation and Control, Jilin University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference33 articles.

1. Study on the Thermal Accumulation and Distribution Inside a Parked Car Cabin;Sidik;Am. J. Appl. Sci.,2010

2. Effects of moderate heat stress on driver vigilance in a moving vehicle;Wyon;Ergonomics,1996

3. Is driving in a hot vehicle safe?;Lenzuni;Int. J. Hyperth.,2014

4. Quantifying the Heat-Related Hazard for Children in Motor Vehicles;Grundstein;Bull. Am. Meteorol. Soc.,2010

5. Li, L. (2015). Simulation and Experimental of Vehicle Cabin and Components Thermal Load under Natural Exposure. [Master’s Thesis, South China University of Technology].

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3