Analysis of the Effects of Fluctuating Wind on the Aerodynamic Performance of a Vertical-Axis Wind Turbine with Variable Pitch

Author:

Zhang Wei12,Yang Sifan1,Chen Cheng23,Li Lang12

Affiliation:

1. School of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang 621000, China

2. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China

3. Aerospace Technology Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Abstract

The wind turbine with a variable-pitch vertical axis is a novel type of small wind turbine with great development potential in the field of wind power generation. This study assessed the aerodynamic performance of a two-dimensional variable-pitch vertical-axis wind turbine (VAWT) under fluctuating wind conditions (sinusoidal-type fluctuations with an average velocity of 6 m/s) using the finite-volume method and the RNG k−ε turbulence model. The effects of the fluctuating inflow amplitude (Uamp), frequency (fc), and mean tip speed ratio (λmean) on the power coefficient of the wind turbine are analyzed. The results show that a maximum power coefficient of 0.33 is obtained when the inflow amplitude reaches 50% of the average velocity. The power coefficient initially increases and then decreases with the increase in the fluctuating inflow frequency, reaching a maximum value of 0.32 at fc=0.45 Hz. Furthermore, the power coefficient reaches its maximum value of 0.372 at λmean = 0.5. Proper orthogonal decomposition (POD) is used to decompose and reconstruct the flow field under both fluctuating and uniform inflow conditions. A comparison of the POD analysis between the two conditions shows that the energy distribution is more dispersed under the fluctuating inflow condition and reconstructing the flow field under fluctuating inflow conditions requires more POD modes than that under uniform inflow conditions.

Funder

National Science Foundation of China

State Key Laboratory of Aerodynamics

GHfund A

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3