Transfer Learning in the Transformer Model for Thermal Comfort Prediction: A Case of Limited Data

Author:

Zhang Xin1,Li Peng2

Affiliation:

1. College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China

2. Beijing Institute of Technology, Beijing 100081, China

Abstract

The HVAC (Heating, Ventilation, and Air Conditioning) system is an important component of a building’s energy consumption, and its primary function is to provide a comfortable thermal environment for occupants. Accurate prediction of occupant thermal comfort is essential for improving building energy utilization as well as health and work efficiency. Therefore, the development of accurate thermal comfort prediction models is of great value. Deep learning based on data-driven techniques has excellent potential for predicting thermal comfort due to the development of artificial intelligence. However, the inability to obtain large quantities of detailed thermal comfort labeling data from residents presents a substantial challenge to the modeling endeavor. This paper proposes a building-to-building transfer learning framework to make deep learning models applicable in data-limited interior building environments, thereby resolving the issue and enhancing model predictive performance. The transfer learning method (TL) is applied to a novel technology dubbed the Transformer model, which has demonstrated outstanding performance in data trend prediction. The model exploits the spatiotemporal relationship of data regarding thermal comfort. Experiments are conducted using the source dataset (Scales project dataset and ASHRAE RP-884 dataset) and the target dataset (Medium US office dataset), and the results show that the proposed TL-Transformer achieves 62.6% accuracy, 57% precision, and a 59% F1 score, and the prediction performance is better than other existing methods. The model is useful for predicting indoor thermal comfort in buildings with limited data, and its validity is verified by experimental results.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3