Quality of Service and Associated Communication Infrastructure for Electric Vehicles

Author:

Ramraj Rajeshkumar1ORCID,Pashajavid Ehsan2ORCID,Alahakoon Sanath1ORCID,Jayasinghe Shantha3

Affiliation:

1. School of Engineering and Technology, Central Queensland University, Bryan Jordan Drive, Gladstone, QLD 4680, Australia

2. School of Electrical Engineering Computing and Mathematical Sciences, Curtin University, Bentley, WA 6102, Australia

3. Maritime and Logistics Management, University of Tasmania, Hobart, TAS 7005, Australia

Abstract

Transportation electrification is pivotal for achieving energy security and emission reduction goals. Electric vehicles (EVs) are at the forefront of this transition, driving the development of new EV technologies and infrastructure. As this trend gains momentum, it becomes essential to enhance the quality of service (QoS) of EVs to encourage their widespread adoption. This paper has been structured with two primary aims to effectively address the above timely technological needs. Firstly, it comprehensively reviews the various QoS factors that influence EVs’ performance and the user experience. Delving into these factors provides valuable insights into how the QoS can be improved, thereby fostering the increased use of EVs on our roads. In addition to the QoS, this paper also explores recent advancements in communication technologies vital for facilitating in-formation exchanges between EVs and charging stations. Efficient communication systems are crucial for optimizing EV operations and enhancing user experiences. This paper presents expert-level technical details in an easily understandable manner, making it a valuable resource for researchers dedicated to improving the QoS of EV communication systems, who are tirelessly working towards a cleaner, more efficient future in transportation. It consolidates the current knowledge in the field and presents the latest discoveries and developments, offering practical insights for enhancing the QoS in electric transportation. A QoS parameter reference map, a detailed classification of QoS parameters, and a classification of EV communication technology references are some of the key contributions of this review paper. In doing so, this paper contributes to the broader objectives of promoting transportation electrification, enhancing energy security, and reducing emissions.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3