Distribution Network Reconfiguration Using Chaotic Particle Swarm Chicken Swarm Fusion Optimization Algorithm

Author:

Wu Yanmin12,Liu Jiaqi2ORCID,Wang Lu2,An Yanjun2,Zhang Xiaofeng1

Affiliation:

1. College of Electric Engineering, Naval University of Engineering, Wuhan 430033, China

2. College of Building Environment Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China

Abstract

Aiming at the problems of traditional optimization algorithms for reconfiguring distribution networks, which easily fall into a local optimum, have difficulty finding a global optimum, and suffer from low computational efficiency, the proposed algorithm named Chaotic Particle Swarm Chicken Swarm Fusion Optimization (CPSCSFO) is used to optimize the reconfiguration of the distribution network with distributed generation (DG). This article works to solve the problems mentioned above from the following three aspects: Firstly, chaotic formula is used to improve the initialization of the particles and optimize the optimal position. This increases individual randomness while avoiding local optimality for inert particles. Secondly, chicken swarm optimization (CSO) and particle swarm optimization (PSO) are combined. The multi-population nature of the CSO algorithm is used to increase the global search capability, and, at the same time, the information exchange between groups is completed to extend the particle search range, which ensures the independence and excellence of each particle group. Thirdly, the node hierarchy method is introduced to calculate the power flow. The branching loop matrix and the node hierarchy strategy are used to detect the network topology. In this way, improper solutions can be reduced, and the efficiency of the algorithm can be improved. This paper has demonstrated better performance by CPSCSFO based on simulation results. The network loss has been reduced and the voltage level of each node in the optimal reconfiguration with distributed power supply has been improved; the network loss in the optimal reconfiguration with DG is 69.59% lower than that reconfiguration before. The voltage level of each node is increased, the minimum node voltage is increased by 3.44% and a better convergence speed is presented. As a result, the quality of network operation and the distribution network is greatly improved and provides guidance for building a safer, more economical and reliable distribution network.

Funder

the National Natural Science Foundation of China under Grant

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3