Climate Change Mitigation in Thailand’s Domestic Aviation: Mitigation Options Analysis towards 2050

Author:

Champeecharoensuk Arthit1,Dhakal Shobhakar1,Chollacoop Nuwong2

Affiliation:

1. Department of Energy, Environment, and Climate Change, School of Environment, Resource and Development, Asian Institute of Technology, Pathum Thani 12120, Thailand

2. National Energy Technology Center (ENTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand

Abstract

Thailand’s civil aviation industry has expanded rapidly in the past ten years resulting in increasing aviation greenhouse gas (GHG) emissions and energy consumption. The rapid growth in air transport is anticipated to continue further. Presently, domestic aviation and the economy of many countries are recovering rapidly in the post-COVID-19 period, resulting in fuel consumption and GHG emissions gradually increasing again. However, despite implementing the ICAO’s CORSIA (International Civil Aviation Organization’s Carbon Offsetting and Reduction Scheme for International Aviation) rule for international aviation, GHG emissions in the domestic aviation sector are largely unregulated. Moreover, the literature lacks a GHG emissions analysis that considers this sector’s potential growth and mitigation policies for future GHG emissions. To close the gap, this study conducted a GHG emissions analysis from this sector under various scenarios through 2050 using historical data during 2008–2020 to forecast future trends. It evaluates the impact of the mitigation policies, such as fuel switching and aircraft technology, on improving fuel efficiency due to technological advancements in aircraft and carbon pricing. The results show that the fuel switching option would result in a significant long-term reduction in GHG emissions, whereas the carbon pricing option and aircraft technology option are desirable in reducing GHG emissions in the short term. Therefore, to meet GHG emissions reduction targets more successfully, all measures must be simultaneously executed to address short- and long-term mitigation strategies. These findings have significant implications for both present and future GHG emissions reduction measures, supporting Thailand’s 2050 climate targets and energy efficiency policies as the domestic aviation industry adjusts.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference82 articles.

1. Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., and Morales, A. (2005). SAGE System for Assessing Aviation’s Global Emissions, Version 1.5, Federal Aviation Administration Office of Environment and Energy.

2. Aircraft cost index and the future of carbon emissions from air travel;Edwards;Appl. Energy,2016

3. Sustainable bio kerosene: Process routes and industrial demonstration activities in aviation biofuels;Chiaramonti;Appl. Energy,2014

4. Is Environmental Innovation Worth It? The Case of the Civil Aviation Industry of Emerging Markets;Yan;IFIP Adv. Inf. Commun. Technol.,2013

5. Norton, T.M. (2022, May 24). Aircraft Greenhouse Gas Emissions during the Landing and Takeoff Cycle at Bay Area Airports. Available online: https://repository.usfca.edu/capstone/15.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3