A Unified Graph Formulation for Spatio-Temporal Wind Forecasting

Author:

Bentsen Lars Ødegaard1ORCID,Warakagoda Narada Dilp1,Stenbro Roy2,Engelstad Paal1

Affiliation:

1. Department of Technology Systems, University of Oslo, P.O. Box 70, 2027 Kjeller, Norway

2. Institute for Energy Technology, P.O. Box 40, 2027 Kjeller, Norway

Abstract

With the rapid adoption of wind energy globally, there is a need for accurate short-term forecasting systems to improve the reliability and integration of such energy resources on a large scale. While most spatio-temporal forecasting systems comprise distinct components to learn spatial and temporal dependencies separately, this paper argues for an approach to learning spatio-temporal information jointly. Many time series forecasting systems also require aligned input information and do not naturally facilitate irregular data. Research is therefore required to investigate methodologies for forecasting in the presence of missing or corrupt measurements. To help combat some of these challenges, this paper studied a unified graph formulation. With the unified formulation, a graph neural network (GNN) was used to extract spatial and temporal dependencies simultaneously, in a single update, while also naturally facilitating missing data. To evaluate the proposed unified approach, the study considered hour-ahead wind speed forecasting in the North Sea under different amounts of missing data. The framework was compared against traditional spatio-temporal architectures that used GNNs together with temporal long short-term memory (LSTM) and Transformer or Autoformer networks, along with the imputation of missing values. The proposed framework outperformed the traditional architectures, with absolute errors of around 0.73–0.90 m per second, when subject to 0–80% of missing input data. The unified graph approach was also better at predicting large changes in wind speed, with an additional 10-percentage-point improvement over the second-best model. Overall, this paper investigated a novel methodology for spatio-temporal wind speed forecasting and showed how the proposed unified graph formulation achieved competitive results compared to more traditional GNN-based architectures.

Funder

Electrification of Oil and Gas Installation by Offshore Wind

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3