Recent Development of Heat Sink and Related Design Methods

Author:

Li Jingnan1ORCID,Yang Li1

Affiliation:

1. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

Heat sinks are vital components that dissipate thermal energy from high temperature systems, such as aero-space vehicles, electronic chips, and turbine engines. In the last few decades, considerable research efforts have been devoted to heat sinks to enhance heat dissipation, minimize temperature in the hot spot region, and reduce the temperature of hot section components. At present, the improvement of the thermal performance of heat sinks encounters many bottlenecks and demands the implementation of new designs, new materials, and flexible manufacturing. This study summarized the recent development of heat sinks over five years with a major review of heat transfer aspects, i.e., conduction, convection, radiation, phase change, and nanofluids technology, as well as perspectives in the aspect of structural design. The purpose of this work is to provide an overview of the existing studies that elevate the thermal performance of heat sinks and propose prospectives and suggestions for future studies.

Funder

The Shanghai Natural Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference59 articles.

1. Research progress of microchannel cooling technology for high-density microsystems;Du;Microelectron. Comput.,2023

2. Holman, J.P., and Lloyd, J. (2010). Heat Transfer, McGraw-Hill Higher Education. [10th ed.].

3. Wang, Y. (2021). Thermal Resistance Modeling and Heat Dissipation Improvement of Press-Pack IGBT. [Master’s Thesis, Chong Qing University]. (In Chinese).

4. MMC-based heat sink topology optimization design for natural convection problems;Zhang;Int. J. Therm. Sci.,2023

5. Heat transfer augmentation of natural convection heat sink through notched fin design;Muneeshwaran;Int. Commun. Heat Mass Transf.,2023

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3