Using Historical Habitat Shifts Driven by Climate Change and Present Genetic Diversity Patterns to Predict Evolvable Potentials of Taxus wallichiana Zucc. in Future

Author:

Li Fuli123,Wang Chongyun12ORCID,Peng Mingchun12,Meng Wei12,Peng Lei12,Chen Dengpeng12

Affiliation:

1. Institute of Ecology and Geobotany, Yunnan University, Kunming 650500, China

2. School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China

3. Weixin National Basic Meteorological Station, Zhaotong 657900, China

Abstract

Climate change is altering the geographical distribution and abundance of species. Abundant genetic variation generally indicates a stronger adaptability and evolutionary potentiality, especially in case of sharply changing climates or environments. With the past global climate fluctuations, especially the climate oscillation since the Quaternary, the global temperature changes related to glaciation, many relict plant species have formed possible refugia in humid subtropical/warm temperate forests, thus retaining a high level of genetic diversity patterns. Based on the contraction and expansion of the geographical distribution of Taxus wallichiana Zucc. in the past driven by climate change, combined with the contemporary genetic diversity modeling, the distribution performance of Taxus wallichiana Zucc. in future climate change was predicted. The areas of highly suitable habitat will increase with climate change in the future. There were continuous and stable high suitable areas of T. wallichiana in the southeastern Tibet and northwestern Yunnan as long-term stable climate refugia. We made the genetic landscape surface of T. wallichiana complex and discovered geographical barriers against gene flow. Genetic barriers spatially isolated the center of genetic diversity into three regions: west (east Himalaya), middle (Yunnan plateau, Sichuan basin, Shennongjia, and the junction of Guizhou and Guangxi provinces), and east (Mt. Huangshan and Fujian). Southern Tibet was isolated from other populations. The central and western Yunnan, the Sichuan basin, and surrounding mountains were isolated from the southern China populations. We found that the positive correlationships between the present species genetic diversity and suitability index during LGM, MH, and 2070. This infers that T. wallichiana has provisioned certain genetic diversity and has strong evolutionary potential under conditions of climate change.

Funder

National Natural Science Foundation of China

Special Foundation for National Science and Technology Basic Resources Investigation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3