Numerical Simulation Research on Improvement Effect of Ultrasonic Waves on Seepage Characteristics of Coalbed Methane Reservoir

Author:

Li Xin,Zhang JieORCID,Li Rongxin,Qi Qi,Zheng Yundong,Li Cuinan,Li Ben,Wu Changjun,Hong Tianyu,Wang Yao,Du Xiaoxiao,Zhao Zaipeng,Liu Xu

Abstract

The matrix pores of a coalbed methane (CBM) reservoir are mostly nanoscale pores, with tiny pore throats and poor connectivity, which belong to the category of low–permeability gas reservoirs. The matrix particles and organic pore surfaces adsorb a large amount of CBM. These problems are the main reasons that limit the increase in CBM production. At present, the primary measure to increase CBM production is hydraulic fracturing. However, due to the technical characteristics and geological conditions of CBM reservoirs, applying this technology to CBM exploitation still has some key issues that need to be resolved. Therefore, it is essential to develop a new technology that can effectively increase the production of CBM. This paper proposed a method that uses ultrasonic waves to improve the seepage characteristics of CBM reservoir and theoretically verifies the feasibility of this idea using numerical simulation. In this paper, we firstly coupled the temperature, pressure, and seepage parameters of the CBM reservoir and built a CBM seepage model under the action of ultrasonic waves. Secondly, by comparing the numerical simulation results with the experiment, we verified the accuracy of the model. Finally, on the basis of the mathematical model, we simulated the change characteristics of pore pressure, reservoir temperature, permeability, and porosity under the action of ultrasonic waves. Research results show that under the action of ultrasonic waves, the pressure-drop funnel of CBM reservoir becomes more apparent. The boundary affected by the pressure drop also increases. With the increase of the action time of ultrasonic waves, the temperature of CBM reservoir also increases, and the action distance is about 4 m. With decreased pore pressure, the permeability and porosity of CBM reservoir significantly increase under the action of ultrasonic waves. With increased ultrasonic power, its effect on reservoir permeability and porosity becomes more significant.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3