Abstract
This paper presents an active power filter based on a seven-level cascade H-bridge where the main contribution is a control strategy that combines model-based predictive control, the voltage vectors of the converter output levels, the phase shift PWM technique, and suboptimal DC-link voltage control. The proposed scheme greatly simplified the overall control system, making it well suited to compensate the current harmonics distortion at the grid side, generated by nonlinear loads connected to the point of common coupling. In addition, the proposed method achieved a balancing of the capacitor voltages of the seven-level cascade H-bridge converter by using the minimum DC-link voltage sensors. This feature significantly reduced the control system complexity and provided a low computational burden. Experimental results confirmed the feasibility and effectiveness of the proposed controller.
Funder
Consejo Nacional de Ciencia y Tecnología, Paraguay
Universidad Nacional de Asunción, Facultad de Ingeniería
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献