Machine Learning-Based Identification Strategy of Fuel Surrogates for the CFD Simulation of Stratified Operations in Low Temperature Combustion Modes

Author:

Mariani Valerio,Pulga LeonardoORCID,Bianchi Gian Marco,Falfari StefaniaORCID,Forte Claudio

Abstract

Many researchers in industry and academia are showing an increasing interest in the definition of fuel surrogates for Computational Fluid Dynamics simulation applications. This need is mainly driven by the necessity of the engine research community to anticipate the effects of new gasoline formulations and combustion modes (e.g., Homogeneous Charge Compression Ignition, Spark Assisted Compression Ignition) to meet future emission regulations. Since those solutions strongly rely on the tailored mixture distribution, the simulation and accurate prediction of the mixture formation will be mandatory. Focusing purely on the definition of surrogates to emulate liquid phase and liquid-vapor equilibrium of gasolines, the following target properties are considered in this work: density, Reid vapor pressure, chemical macro-composition and volatility. A set of robust algorithms has been developed for the prediction of volatility and Reid vapor pressure. A Bayesian optimization algorithm based on a customized merit function has been developed to allow for the efficient definition of surrogate formulations from a palette of 15 pure compounds. The developed methodology has been applied on different real gasolines from literature in order to identify their optima surrogates. Furthermore, the ‘unicity’ of the surrogate composition is discussed by comparing the optimum solution with the most different one available in the pool of equivalent-valuable solutions. The proposed methodology has proven the potential to formulate surrogates characterized by an overall good agreement with the target properties of the experimental gasolines (max relative error below 10%, average relative error around 3%). In particular, the shape and the end-tails of the distillation curve are well captured. Furthermore, an accurate prediction of key chemical macro-components such as ethanol and aromatics and their influence on evaporative behavior is achieved. The study of the ‘unicity’ of the surrogate composition has revealed that (i) the unicity is strongly correlated with the accuracy and that (ii) both ‘unicity’ and accuracy of the prediction are very sensitive to the high presence of aromatics.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3