High-Fidelity Modeling and Investigation on Blade Shape and Twist Angle Effects on the Efficiency of Small-Scale Wind Turbines

Author:

Yossri Widad1,Ben Ayed Samah2,Abdelkefi Abdessattar1ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering, New Mexico State University, Las Cruces, NM 88003, USA

2. Department of Engineering Technology and Surveying Engineering, New Mexico State University, Las Cruces, NM 88003, USA

Abstract

A high-fidelity analysis is carried out in order to evaluate the effects of blade shape, airfoil cross-section. as well as twist angle distribution on the yielded torque and generated power of a horizontal axis Small-Scale Wind Turbine (SSWT). A computational modeling and an effective design for a small turbine with a blade length of 25 cm subject to a 4 m/s freestream velocity are presented, in which a segregated RANS solver is utilized. Four airfoil profiles are assessed, namely NACA0012, NACA0015, NACA4412, and NACA4415, and two blade shape configurations, rectangular and tapered, are evaluated. The flow around the rotating turbines is investigated along with blade stresses and performance output for each configuration. Subsequently, the impact of various linear and nonlinear twist distributions on SSWT efficiency is also examined. Results show that for the studied operating conditions corresponding to low-speed flows, the rectangular blade configuration outperforms the tapered blade shape from the generated torque and power perspectives, while the tapered shape configuration represents an attractive design choice from the yielded stresses point of view. Additionally, while the nonlinear twist configuration results in the best performance among the configurations studied, an SSWT blade design implementing a linear twist distribution can be highly competitive provided that a good slope is carefully selected.

Funder

United States Bureau of Reclamation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3