Comprehensive Review of Dust Properties and Their Influence on Photovoltaic Systems: Electrical, Optical, Thermal Models and Experimentation Techniques

Author:

Almukhtar Hussam1,Lie Tek Tjing1ORCID,Al-Shohani Wisam A. M.2ORCID,Anderson Timothy3,Al-Tameemi Zaid1ORCID

Affiliation:

1. Department of Electrical and Electronic Engineering, Auckland University of Technology, Auckland 1010, New Zealand

2. Department of Mechanical Power Engineering, Engineering Technical College, Middle Technical University, Baghdad 53172, Iraq

3. Western Institute of Technology, New Plymouth 4310, New Zealand

Abstract

As conventional energy sources decrease and worldwide power demand grows, the appeal of photovoltaic (PV) systems as sustainable and ecofriendly energy sources has grown. PV system installation is influenced by geographical location, orientation, and inclination angle. Despite its success, weather conditions such as dust substantially influences PV module performance. This study provides a comprehensive review of the existing literature on the impact of dust characteristics on PV systems from three distinct perspectives. Firstly, the study looks at the dust properties in different categories: optical, thermal, physical, and chemical, highlighting their significant impact on the performance of PV systems. Secondly, the research reviews various approaches and equipment used to evaluate dust’s impact on PV, emphasizing the need for reliable instruments to measure its effects accurately. Finally, the study looks at modeling and predicting the influence of dust on PV systems, considering the parameters that affect electrical, optical, and thermal behavior. The review draws attention to the need for further research into dust’s properties, including thermal conductivity and emissivity. This analysis highlights the need for further research to develop a scientific correlation to predict the thermal behavior of PV in dusty environments. This paper identifies areas for further research to develop more efficient and effective methods for analyzing this influence and improving PV efficiency and lifespan.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3