Identification Algorithm and Improvement of Modal Damping Ratios for Armature Assembly in a Hydraulic Servo-Valve with Magnetic Fluid

Author:

Peng Jinghui12ORCID,Zhang Yayun1,Li Songjing1ORCID,Bao Wen3,Tanaka Yutaka4ORCID

Affiliation:

1. Department of Fluid Control and Automation, Harbin Institute of Technology, Harbin 150001, China

2. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China

3. School of Energy Science and Engineer, Harbin Institute of Technology, Harbin 150001, China

4. Faculty of Engineering and Design, Hosei University, Tokyo 102-8160, Japan

Abstract

The high-frequency vibration and resonance of armature assembly in the hydraulic servo valve are the main reasons for instability and failure. Magnetic fluid (MF) operating in the squeeze mode can be taken as an effective damper for resonance suppression in the servo valve. Due to excitation difficulty and the low signal-to-noise ratio of high-frequency vibration signals, the capability of MF to modify multiple-order modal damping ratios in a multi-degree-of-freedom system is still unclear. To reveal the mechanism of magnetic fluid for improving modal damping ratios, an algorithm for modal damping ratio identification is proposed. The modal damping ratios of the armature assembly with and without magnetic fluid are identified based on the tested resonance free decay responses. Four resonance frequencies of armature assembly are observed, and the corresponding damping ratios are identified. The equivalent modal damping ratios due to squeeze flow of MF are obtained. The results show that the proposed algorithm can identify damping ratios with an accuracy of up to 98.79%. The damping ratios are improved by double or more due to the magnetic fluid, and the maximum resonance amplitudes are significantly reduced by 65.2% (from 916.5 μm to 318.6 μm).

Funder

National Key R&D Program of China

Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3