A Review of Reinforcement Learning-Based Powertrain Controllers: Effects of Agent Selection for Mixed-Continuity Control and Reward Formulation

Author:

Egan Daniel1ORCID,Zhu Qilun1ORCID,Prucka Robert1ORCID

Affiliation:

1. Department of Automotive Engineering, Clemson University, Clemson, SC 29634, USA

Abstract

One major cost of improving the automotive fuel economy while simultaneously reducing tailpipe emissions is increased powertrain complexity. This complexity has consequently increased the resources (both time and money) needed to develop such powertrains. Powertrain performance is heavily influenced by the quality of the controller/calibration. Since traditional control development processes are becoming resource-intensive, better alternate methods are worth pursuing. Recently, reinforcement learning (RL), a machine learning technique, has proven capable of creating optimal controllers for complex systems. The model-free nature of RL has the potential to streamline the control development process, possibly reducing the time and money required. This article reviews the impact of choices in two areas on the performance of RL-based powertrain controllers to provide a better awareness of their benefits and consequences. First, we examine how RL algorithm action continuities and control–actuator continuities are matched, via native operation or conversion. Secondly, we discuss the formulation of the reward function. RL is able to optimize control policies defined by a wide spectrum of reward functions, including some functions that are difficult to implement with other techniques. RL action and control–actuator continuity matching affects the ability of the RL-based controller to understand and operate the powertrain while the reward function defines optimal behavior. Finally, opportunities for future RL-based powertrain control development are identified and discussed.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3