Comparison of the Power Extraction Performance of an Oscillating Hydrofoil Turbine with Different Deflector Designs

Author:

Shanmugam Arun Raj1ORCID,Park Ki Sun12ORCID,Sohn Chang Hyun3ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering, United Arab Emirates University, Al Ain 15551, Abu Dhabi, United Arab Emirates

2. National Space Science and Technology Center (NSSTC), United Arab Emirates University, Al Ain 15551, Abu Dhabi, United Arab Emirates

3. School of Mechanical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea

Abstract

The unsteady RANS equations for a two-dimensional hydrofoil were solved using ANSYS Fluent to model and simulate the hydrofoil at a constant Reynolds number, Re, of 2 × 105 and a fixed reduced frequency, f*, of 0.14. The simulations were performed by varying parameters, such as the number of deflectors N, tilt angle of the deflectors β, and vertical spacing of the deflectors J* = J/c, to determine the effect of the upstream deflector’s position on the hydrofoil’s performance. The results demonstrated that the deflector was effective at redirecting the separated flow away from the edges, which was then amplified downstream before colliding with the leading edge of the oscillating hydrofoil to increase power extraction. The performance of the oscillating hydrofoil was highly reliant on all three studied parameters. The hydrofoil with two deflectors (N = 2) displayed marginally superior power extraction capability compared to the hydrofoil with a single deflector (N = 1). Furthermore, the hydrofoil with the rightward inclined deflector at a low tilt angle (−5° ≥ β ≥ −10°) exhibited relatively better power extraction performance than the others. The best deflector design increased the hydrofoil’s cycle-averaged power coefficient by approximately 32% compared to a hydrofoil without a deflector. The vortex structures revealed that the flow evolution and power extraction performance were dependent on the size, robustness, and growth rate of the leading edge vortex (LEV) as well as the timing of LEV separation. The power extraction efficiency of an oscillating hydrofoil increased in the mid downstroke and upstroke due to the formation of a more robust LEV when the hydrofoil–deflector interaction was advantageous, but it dropped in the wing reversal due to the early separation of the LEV when the hydrofoil–deflector interaction was counterproductive.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3