Optimal Power Scheduling and Techno-Economic Analysis of a Residential Microgrid for a Remotely Located Area: A Case Study for the Sahara Desert of Niger

Author:

Tahirou Halidou Issoufou Tahirou1,Or Rashid Howlader Harun Or Rashid2ORCID,Gamil Mahmoud M.13,Elkholy M. H.13ORCID,Senjyu Tomonobu1ORCID

Affiliation:

1. Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nakagami-Gun, Nishihara-Cho, Okinawa 903-0213, Japan

2. Hawai’i Natural Energy Institute, University of Hawai’i at Manoa, Honolulu, HI 96822, USA

3. Department of Electrical Power and Machines, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt

Abstract

The growing demand for electricity and the reconstruction of poor areas in Africa require an effective and reliable energy supply system. The construction of reliable, clean, and inexpensive microgrids, whether isolated or connected to the main grid, has great importance in solving energy supply problems in remote desert areas. It is a complex interaction between the level of reliability, economical operation, and reduced emissions. This paper investigates the establishment of an efficient and cost-effective microgrid in a remote area located in the Djado Plateau, which lies in the Sahara Ténéré desert in northeastern Niger. Three cases are presented and compared to find the best one in terms of low costs. In case 1, the residential area is supplied by PVs and a battery energy storage system (BESS), while in the second case, PVs, a BESS, and a diesel generator (DG) are utilized to supply the load. In the third case, the grid will take on load-feeding responsibilities alongside PVs, a BESS, and a DG (used only in scenario 1 during the 2 h grid outage). The central objective is to lower the cost of the proposed microgrid. Among the three cases, case 3, scenario 2 has the lowest LCC, but implementing it is difficult because of the nature of the site. The results show that case 2 is the best in terms of total life cycle cost (LCC) and no grid dependency, as the annual total LCC reaches about $2,362,997. In this second case, the LCC is 11.19% lower compared to the first case and 5.664% lower compared to the third case, scenario 1.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3