Numerical Simulation of Flow and Heat Transfer Characteristics in Non-Closed Ring-Shaped Micro-Pin-Fin Arrays

Author:

Chen Ming1,Ji Can1,Liu Zhigang1,Wang Naihua2ORCID

Affiliation:

1. Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China

2. Institute of Thermal Science and Technology, Shandong University, Jinan 250061, China

Abstract

In this study, flow and heat transfer characteristics in novel non-closed 3/4 ring-shaped micro-pin-fin arrays with in-line and staggered layouts were investigated numerically. The flow distribution, wake structure, vorticity field and pressure drop were examined in detail, and convective heat transfer features were explored. Results show that vortex pairs appeared earlier in the ring-shaped micro-pin-fin array compared with the traditional circular devices. Pressure drop across the microchannel varied with layout of the fins, while little difference in pressure drop was observed between ring-shaped and circular fins of the same layouts, with the maximum difference being 1.43%. The staggered ring-shaped array was found to outperform the in-line array and the circular arrays in convective heat transfer. A maximum increase of 21.34% in heat transfer coefficient was observed in the ring-shaped micro-pin-fin array in comparison with the circular micro-pin-fin array. The overall thermal-hydraulic performance of the microstructure was evaluated, and the staggered ring-shaped array with a fin height of 0.5 mm exhibited the best performance among the configurations studied.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Collaborative Innovation Project of Colleges in Jinan

Science, Education & Industry Integration Program of Qilu University of Technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3