rAAV2-Mediated Restoration of GALC in Neural Stem Cells from Krabbe Patient-Derived iPSCs

Author:

Tian Guoshuai1ORCID,Cao Chunyu2,Li Shuyue2,Wang Wei3,Zhang Ye1ORCID,Lv Yafeng2ORCID

Affiliation:

1. State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China

2. Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang 443000, China

3. Department of Neurology, China-Japan Friendship Hospital, Beijing 100029, China

Abstract

Krabbe disease is a rare neurodegenerative fatal disease. It is caused by deficiency of the lysosomal enzyme galactocerebrosidase (GALC), which results in progressive accumulation of galactolipid substrates in myelin-forming cells. However, there is still a lack of appropriate neural models and effective approaches for Krabbe disease. We generated induced pluripotent stem cells (iPSCs) from a Krabbe patient previously. Here, Krabbe patient-derived neural stem cells (K-NSCs) were induced from these iPSCs. By using nine kinds of recombinant adeno-associated virus (rAAV) vectors to infect K-NSCs, we found that the rAAV2 vector has high transduction efficiency for K-NSCs. Most importantly, rAAV2-GALC rescued GALC enzymatic activity in K-NSCs. Our findings not only establish a novel patient NSC model for Krabbe disease, but also firstly indicate the potential of rAAV2-mediated gene therapy for this devastating disease.

Funder

Beijing Municipal Science & Technology Commission

Yichang Science and Technology Project

Hubei Provincial Department of Education Science and Technology Research Program Young Talents Project

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3