Acenocoumarol, an Anticoagulant Drug, Prevents Melanogenesis in B16F10 Melanoma Cells

Author:

Han Hyunju1,Hyun Changgu1ORCID

Affiliation:

1. Jeju Inside Agency and Cosmetic Science Center, Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Republic of Korea

Abstract

Hyperpigmentation can occur in abnormal skin conditions such as melanomas, as well as in conditions including melasma, freckles, age spots, seborrheic keratosis, and café-au-lait spots (flat brown spots). Thus, there is an increasing need for the development of depigmenting agents. We aimed to repurpose an anticoagulant drug as an effective ingredient against hyperpigmentation and apply cosmeceutical agents. In the present study, the anti-melanogenic effects of two anticoagulant drugs, acenocoumarol and warfarin, were investigated. The results showed that both acenocoumarol and warfarin did not cause any cytotoxicity and resulted in a significant reduction in intracellular tyrosinase activity and melanin content in B16F10 melanoma cells. Additionally, acenocoumarol inhibits the expression of melanogenic enzymes such as tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2, suppressing melanin synthesis through a cAMP-dependent, protein kinase (PKA)-dependent downregulation of microphthalmia-associated transcription factor (MITF), a master transcription factor in melanogenesis. Furthermore, anti-melanogenic effects were exerted by acenocoumarol through downregulation of the p38 and JNK signaling pathway and upregulation of extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt)/glycogen synthesis kinase-3β (GSK-3β) cascades. In addition, the β-catenin content in the cell cytoplasm and nucleus was increased by acenocoumarol through a reduction in the phosphorylated β-catenin (p-β-catenin content). Finally, we tested the potential of acenocoumarol for topical applications by conducting primary human skin irritation tests. Acenocoumarol did not induce any adverse reactions during these tests. Based on the results, it can be concluded that acenocoumarol regulates melanogenesis through various signaling pathways such as PKA, MAPKs, PI3K/Akt/GSK-3β, and β-catenin. These findings suggest that acenocoumarol has the potential to be repurposed as a drug for treating hyperpigmentation symptoms and could provide new insights into the development of therapeutic approaches for hyperpigmentation disorders.

Funder

Ministry of Trade, Industry and Energy (MOTIE) at the Korea Institute for the Advancement of Technology

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3