Abstract
Herein we design a fiber sensor able to simultaneously measure the temperature and the pressure under harsh conditions, such as strong electromagnetic interference and high pressure. It is built on the basis of the fiber-optic Fabry–Perot (F–P) interference and the temperature sensitive mechanism of fluorescent materials. Both halogen lamps and light-emitting diodes (LED) are employed as the excitation light source. The reflected light from the sensor contains the low coherent information of interference cavity and the fluorescent lifetime. This information is independent due to the separate optical path and the different demodulation device. It delivers the messages of pressure and temperature, respectively. It is demonstrated that the sensor achieved pressure measurement at the range of 120–400 KPa at room temperature with a sensitivity of 1.5 nm/KPa. Moreover, the linearity of pressure against the cavity length variation was over 99.9%. In the meantime, a temperature measurement in the range of 25–80 °C, with a sensitivity of 0.0048 ms/°C, was obtained. These experimental results evince that this kind of sensor has a simple configuration, low-cost, and easy fabrication. As such, it can be particularly applied to many fields.
Funder
Laser Precision Machining Engineering Technology Research Center of Fujian Province
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献