Abstract
The aggregation of red blood cells (RBCs) in normal blood (non-coagulation) has been quantitatively measured by blood pulsatile flow based on multiple-frequency electrical impedance spectroscopy. The relaxation frequencies fc under static and flowing conditions of blood pulsatile flow are utilized to evaluate the RBC aggregation quantitatively with the consideration of blood flow factors (RBC orientation, deformation, thickness of electrical double layer (EDL)). Both porcine blood and bovine blood are investigated in experiments, for the reason that porcine blood easily forms RBC aggregates, while bovine blood does not. The results show that the relaxation frequencies fc of porcine blood and bovine blood present opposite performance, which indicates that the proposed relaxation frequency fc is efficient to measure RBCs aggregation. Furthermore, the modified Hanai equation is proposed to quantitatively calculate the influence of RBCs aggregation on relaxation frequency fc. The study confirms the feasibility of a high speed, on-line RBC aggregation sensing method in extracorporeal circulation systems.
Funder
Natural Science Foundation of Zhejiang Province
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献