Abstract
Considering the Weierstrass data as ( ψ , f , g ) = ( 2 , 1 - z - m , z n ) , we introduce a two-parameter family of Henneberg-type minimal surface that we call H m , n for positive integers ( m , n ) by using the Weierstrass representation in the four-dimensional Euclidean space E 4 . We define H m , n in ( r , θ ) coordinates for positive integers ( m , n ) with m ≠ 1 , n ≠ - 1 , - m + n ≠ - 1 , and also in ( u , v ) coordinates, and then we obtain implicit algebraic equations of the Henneberg-type minimal surface of values ( 4 , 2 ) .
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Reference40 articles.
1. Lecons sur la Theorie Generate des Surfaces III;Darboux,1894
2. A Treatise on the Differential Geometry of Curves and Surfaces;Eisenhart,1909
3. Théorie de la déformation des surfaces;Bour;J. l’Êcole Polytech.,1862
4. Über diejenige minimalfläche, welche die Neilsche Parabel zur ebenen geodätischen Linie hat;Henneberg;Wolf Z.,1876
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献