Anthropogenic Activity Effects on Canals Morphology, Case Study: Nile Delta, Egypt

Author:

Abd-Elaziz Sherien,Zeleňáková MartinaORCID,Mésároš Peter,Purcz Pavol,Abd-Elhamid Hany F.

Abstract

Waterways are usually contaminated with wastes from industrial, domestic or irrigation sectors. Organizations in charge have adopted solutions to eliminate this problem; however, the adopted solutions contribute indirectly to modifying canal morphology during maintenance. These are examples of anthropogenic activity, as well as randomly implemented dredging, which expand the canal cross-sections. Egypt is a country which depends on surface irrigation through a huge network of canals. The majority of canals in Egypt are subject to anthropogenic activity which affects their efficiency. This study aims to assess the impact of conjugated instances of anthropogenic activity and dredging on canal morphology and capacity. Five canals were selected in the current study in the Nile Delta, Egypt. These canals are highly affected by two associated factors: anthropogenic activity by users and dredging by the government. The study also aims to determine the effects of a newly adopted policy for saving surface water through restoration of the canals’ originally designed cross-sections. The results showed a clear change in canal morphology, which has increased the volume of water in the affected canals. In some cases, the volume of water has increased by 59%, which could have negative consequences for Egypt’s water resources. Sustainable management of water resources in Egypt requires saving each water droplet, and canal rehabilitation is expected to save about 6.56 million m3/year by the year 2022.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference34 articles.

1. Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas

2. Water Quality Status of Upper Ganga Canal;Singh,2020

3. Microplastic pollution in surface water of Lake Victoria

4. Water, Electric Energy and Flood

5. Agricultural and Environmental Weeds of South Texas and their Management;Soti;Subtrop. Agric. Environ.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3