Abstract
Efficient and sustainable exploitation of water resources requires the adoption of innovative and contemporary management techniques, a need that becomes even more demanding due to climate change and increasing pressures coming from anthropogenic activities. An important outcome of this reality is the qualitative and quantitative degradation of groundwater, which clearly indicates the need to exploit surface runoff. This study presents an integrated Geographic Information System (GIS)-based methodological framework for revealing and selecting suitable locations to build small-scale reservoirs and exploit surface runoff. In this framework, the SWAT model was used to quantify surface runoff, followed by the simulation of reservoir scenarios through reservoir simulation software. Andros Island (located in Cyclades Prefecture), Greece was selected as the study area. The obtained results indicated the most suitable location for creating a reservoir for maximizing exploitation of surface runoff, based on the specific water demands of the nearby areas and the existing meteorological, hydrological, and geological background potential. Thus, two selected dam locations are analyzed by using the proposed framework. The findings showed that the first dam site is inappropriate for creating a reservoir, as it cannot meet the demand for large water extraction volumes. In addition, the outcomes confirmed the efficiency of the proposed methodology in optimum selection of locations to construct small-scale water exploitation works. This research presents a contemporary methodological framework that highlights the capability of GIS, SWAT modeling, and reservoir simulation coupling in detecting optimal locations for constructing small reservoirs.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Reference74 articles.
1. Evaporative Fluxes and Surface Soil Moisture Retrievals in a Mediterranean Setting from Sentinel-3 and the “Simplified Triangle”
2. Introducing flood susceptibility index using remote-sensing data and geographic information systems;Stathopoulos,2017
3. A Robust remote sensing-spatial modeling-remote sensing (R--M--R) approach for flood hazard assessment;Stathopoulos,2019
4. Environmental Hazards: Assessing Risk and Reducing Disaster
5. Environmental Hazards;Smith,2009
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献