USA Wind Energy-Caused Bat Fatalities Increase with Shorter Fatality Search Intervals

Author:

Smallwood K. ShawnORCID

Abstract

Wind turbine collision fatalities of bats have likely increased with the rapid expansion of installed wind energy capacity in the USA since the last national-level fatality estimates were generated in 2012. An assumed linear increase of fatalities with installed capacity would expand my estimate of bat fatalities across the USA from 0.89 million in 2012 to 1.11 million in 2014 and to 1.72 million in 2019. However, this assumed linear relationship could have been invalidated by shifts in turbine size, tower height, fatality search interval during monitoring, and regional variation in bat fatalities. I tested for effects of these factors in fatality monitoring reports through 2014. I found no significant relationship between bat fatality rates and wind turbine size. Bat fatality rates increased with increasing tower height, but this increase mirrored the increase in fatality rates with shortened fatality search intervals that accompanied the increase in tower heights. Regional weighting of mean project-level bat fatalities increased the national-level estimate 17% to 1.3 (95% CI: 0.15–3.0) million. After I restricted the estimate’s basis to project-level fatality rates that were estimated from fatality search intervals <10 days, my estimate increased by another 71% to 2.22 (95% CI: 1.77–2.72) million bat fatalities in the USA’s lower 48 states in 2014. Project-level fatality estimates based on search intervals <10 days were, on average, eight times higher than estimates based on longer search intervals. Shorter search intervals detected more small-bodied species, which contributed to a larger all-bat fatality estimate.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

Reference134 articles.

1. Impacts of Wind Energy Development on Bats: Implications for Conservation

2. Bats killed in large numbers at United States wind energy facilities;Hayes;BioScience,2013

3. Comparing bird and bat fatality-rate estimates among North American wind-energy projects

4. American Wind Energy Associationhttps://www.awea.org/wind-101/basics-of-wind-energy/wind-facts-at-a-glance

5. Impacts to Wildlife of Wind Energy Siting and Operation in the United States;Allison;Issues Ecol.,2019

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3