Transcriptional Regulation of Selenoprotein F by Heat Shock Factor 1 during Selenium Supplementation and Stress Response

Author:

Ren BingyuORCID,Huang Yanmei,Zou Chen,Wu Yingying,Huang Yuru,Ni Jiazuan,Tian Jing

Abstract

Changes of Selenoprotein F (SELENOF) protein levels have been reported during selenium supplementation, stressful, and pathological conditions. However, the mechanisms of how these external factors regulate SELENOF gene expression are largely unknown. In this study, HEK293T cells were chosen as an in vitro model. The 5′-flanking regions of SELENOF were analyzed for promoter features. Dual-Glo Luciferase assays were used to detect promoter activities. Putative binding sites of Heat Shock Factor 1 (HSF1) were predicted in silico and the associations were further proved by chromatin immunoprecipitation (ChIP) assay. Selenate and tunicamycin (Tm) treatment were used to induce SELENOF up-regulation. The fold changes in SELENOF expression and other relative proteins were analyzed by Q-PCR and western blot. Our results showed that selenate and Tm treatment up-regulated SELENOF at mRNA and protein levels. SELENOF 5′-flanking regions from −818 to −248 were identified as core positive regulatory element regions. Four putative HSF1 binding sites were predicted in regions from −1430 to −248, and six out of seven primers detected positive results in ChIP assay. HSF1 over-expression and heat shock activation increased the promoter activities, and mRNA and protein levels of SELENOF. Over-expression and knockdown of HSF1 showed transcriptional regulation effects on SELENOF during selenate and Tm treatment. In conclusion, HSF1 was discovered as one of the transcription factors that were associated with SELENOF 5′-flanking regions and mediated the up-regulation of SELENOF during selenate and Tm treatment. Our work has provided experimental data for the molecular mechanism of SELENOF gene regulation, as well as uncovered the involvement of HSF1 in selenotranscriptomic for the first time.

Funder

National Natural Science Foundation of China

Science and Technology Innovation Committee of Shenzhen Municipality

China Postdoctoral Science Foundation

Natural Science Foundation of Guangdong Province

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3