Convolutional Neural Networks with Transfer Learning for Recognition of COVID-19: A Comparative Study of Different Approaches

Author:

Garg Tanmay,Garg Mamta,Mahela Om PrakashORCID,Garg Akhil RanjanORCID

Abstract

To judge the ability of convolutional neural networks (CNNs) to effectively and efficiently transfer image representations learned on the ImageNet dataset to the task of recognizing COVID-19 in this work, we propose and analyze four approaches. For this purpose, we use VGG16, ResNetV2, InceptionResNetV2, DenseNet121, and MobileNetV2 CNN models pre-trained on ImageNet dataset to extract features from X-ray images of COVID and Non-COVID patients. Simulations study performed by us reveal that these pre-trained models have a different level of ability to transfer image representation. We find that in the approaches that we have proposed, if we use either ResNetV2 or DenseNet121 to extract features, then the performance of these approaches to detect COVID-19 is better. One of the important findings of our study is that the use of principal component analysis for feature selection improves efficiency. The approach using the fusion of features outperforms all the other approaches, and with this approach, we could achieve an accuracy of 0.94 for a three-class classification problem. This work will not only be useful for COVID-19 detection but also for any domain with small datasets.

Publisher

MDPI AG

Reference64 articles.

1. COVID-19 Diagnostics, Tools, and Prevention

2. Abbott Launches Molecular Point-of-Care Test to Detect Novel Coronavirus in as Little as Five Minuteshttps://abbott.mediaroom.com/2020-03-27-Abbott-Launches-MolecularPoint-of-Care-Test-to-Detect-Novel-Coronavirus-in-as-Little-as-Five-Minutes

3. Association of Comorbidities with Coronavirus Disease 2019: A Review

4. The Role of Chest Imaging in Patient Management During the COVID-19 Pandemic

5. Role of Chest Radiographs during COVID-19 Pandemic

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3